

Mathematics Education EMAT 4680/6680 Mathematics with Technology Jim Wilson, Instructor

Exploration #4: The Centroid

Jaime Maxey

The Centroid (G) of a triangle is the common intersection of the three medians. A median of a triangle is the segment from a vertex to the midpoint of the opposite side.

Prove that the medians divide the triangle into six small triangles. Show that these triangles all have the same area.

Let's observe Δ ABC below:

Points D,E,F are midpoints of the three sides of \triangle ABC.

G is the centroid of $\triangle ABC$, which is the point where the three medians of a triangle intersect. A median is a line segment that connects a vertex of the triangle to the midpoint of the opposite side of that triangle. Segments AE, CD, and BF are all medians in the diagram above.

Let us first examine $\triangle BGC$.

We know that line segment BE=EC because E is the midpoint of the line segment BC, which by definition is the middle point of a line segment.

Now let us look at $\triangle EGC$ and $\triangle BGE$. We have already concluded that line segments BE and EC are congruent. In addition, the two triangles share the same base GE. So $\triangle EGC$ and $\triangle BGE$ must have the same area, because the area of a triangle is defined as $\frac{1}{2}$ base*height, and the triangles share the same based of BE=CE and the same height of GE. Let us define the area of each of these triangles as A₁.

We can now apply the aforementioned to $\triangle AGB$ and $\triangle AGC$. We will define the area of triangles $\triangle AGD$ and $\triangle BGD$ as A₂. We will define the area of triangles $\triangle AGF$ and $\triangle CGF$ as A₃.

Let us now examine two separate triangles: $\triangle AEB$ and $\triangle AEC$. We can use the areas of the 6 triangles in the diagram above. The area of $\triangle AEB=2A_2+A_1$. The area of $\triangle AEC=2A_3+A_1$.

We can show that the area of $\triangle AEB$ and $\triangle AEC$ are equal. We know that segments BE and CE are equal because E is the midpoint of BC. Therefore, the triangles have equal bases. In addition, both triangles share segment AE which is the height of both triangles.

Therefore, we can conclude the following: Area of $\triangle AEB = Area \text{ of } \triangle AEC$. Therefore, $2A_2+A_1=2A_3+A_1$. We can simplify and conclude that $A_2=A_3$.

Let us now examine two separate triangles: Δ BFC and Δ BFA. We can use the areas of the 6 triangles in the diagram above. The area of Δ BFC=2A₁+A₃. The area of Δ BFA=2A₂+A₃.

We can show that the area of \triangle BFC and \triangle BFA are equal. We know that segments AF and FC are equal because F is the midpoint of AC. Therefore, the triangles have equal bases. In addition, both triangles share segment BF which is the height of both triangles.

Therefore, we can conclude the following: Area of $\triangle BFC = Area \text{ of } \triangle BFA$. Therefore, $2A_1+A_3=2A_2+A_3$. We can simplify and conclude that $A_1=A_2$.

We have just shown that $A_2=A_3$ and $A_1=A_2$, so therefore, $A_1=A_3$ and $A_1=A_2=A_3$.

Therefore, the areas of the six smaller triangles who all share the centroid of the triangles as a point, created from the three medians of the triangle, have the same area.