Mathematics Education
 EMAT 4680/6680 Mathematics with Technology Jim Wilson, Instructor

Exploration \#4: The Centroid

Jaime Maxey
The Centroid (G) of a triangle is the common intersection of the three medians. A median of a triangle is the segment from a vertex to the midpoint of the opposite side.

Prove that the medians divide the triangle into six small triangles. Show that these triangles all have the same area.

Let's observe $\Delta \mathrm{ABC}$ below:

Points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of the three sides of $\triangle \mathrm{ABC}$.
G is the centroid of $\triangle \mathrm{ABC}$, which is the point where the three medians of a triangle intersect. A median is a line segment that connects a vertex of the triangle to the midpoint of the opposite side of that triangle. Segments AE, CD, and BF are all medians in the diagram above.

Let us first examine $\Delta \mathrm{BGC}$.
We know that line segment $\mathrm{BE}=\mathrm{EC}$ because E is the midpoint of the line segment BC , which by definition is the middle point of a line segment.

Now let us look at $\triangle \mathrm{EGC}$ and $\triangle \mathrm{BGE}$. We have already concluded that line segments BE and EC are congruent. In addition, the two triangles share the same base GE. So $\triangle \mathrm{EGC}$ and $\triangle \mathrm{BGE}$ must have the same area, because the area of a triangle is defined as $1 / 2$ base*height, and the triangles share the same based of $\mathrm{BE}=\mathrm{CE}$ and the same height of GE. Let us define the area of each of these triangles as A_{1}.

We can now apply the aforementioned to $\triangle \mathrm{AGB}$ and $\triangle \mathrm{AGC}$.
We will define the area of triangles $\triangle \mathrm{AGD}$ and $\triangle \mathrm{BGD}$ as A_{2}. We will define the area of triangles $\triangle \mathrm{AGF}$ and $\triangle \mathrm{CGF}$ as A_{3}.

Let us now examine two separate triangles: $\triangle \mathrm{AEB}$ and $\triangle \mathrm{AEC}$.
We can use the areas of the 6 triangles in the diagram above.
The area of $\Delta A E B=2 A_{2}+A_{1}$. The area of $\Delta A E C=2 A_{3}+A_{1}$.
We can show that the area of $\triangle \mathrm{AEB}$ and $\triangle \mathrm{AEC}$ are equal. We know that segments BE and CE are equal because E is the midpoint of BC . Therefore, the triangles have equal bases. In addition, both triangles share segment AE which is the height of both triangles.

Therefore, we can conclude the following: Area of $\triangle \mathrm{AEB}=$ Area of $\triangle \mathrm{AEC}$. Therefore, $2 \mathrm{~A}_{2}+\mathrm{A}_{1}=2 \mathrm{~A}_{3}+\mathrm{A}_{1}$. We can simplify and conclude that $\mathrm{A}_{2}=\mathrm{A}_{3}$.

Let us now examine two separate triangles: $\triangle \mathrm{BFC}$ and $\triangle \mathrm{BFA}$.
We can use the areas of the 6 triangles in the diagram above.
The area of $\Delta \mathrm{BFC}=2 \mathrm{~A}_{1}+\mathrm{A}_{3}$. The area of $\triangle \mathrm{BFA}=2 \mathrm{~A}_{2}+\mathrm{A}_{3}$.
We can show that the area of $\triangle \mathrm{BFC}$ and $\triangle \mathrm{BFA}$ are equal. We know that segments AF and FC are equal because F is the midpoint of AC . Therefore, the triangles have equal bases. In addition, both triangles share segment BF which is the height of both triangles.

Therefore, we can conclude the following: Area of $\triangle \mathrm{BFC}=$ Area of $\triangle \mathrm{BFA}$.
Therefore, $2 \mathrm{~A}_{1}+\mathrm{A}_{3}=2 \mathrm{~A}_{2}+\mathrm{A}_{3}$. We can simplify and conclude that $\mathrm{A}_{1}=\mathrm{A}_{2}$.
We have just shown that $A_{2}=A_{3}$ and $A_{1}=A_{2}$, so therefore, $A_{1}=A_{3}$ and $A_{1}=A_{2}=A_{3}$.

Therefore, the areas of the six smaller triangles who all share the centroid of the triangles as a point, created from the three medians of the triangle, have the same area.

